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LIQUID-LIQUID EQUlLlBRlUM IN POLYDISPERSE 
RANDOM COPOLYMER BLENDS 

MARGIT T. RATZSCH,* CHRISTIAN WOHLFARTH, 
DIETER BROWARZIK, and HORST KEHLEN 

Department of Chemistry 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

Continuous thermodynamics is applied to the liquid-liquid equilibrium 
in random copolymer blends. Two copolymers are mixed, each consis- 
ting of two different monomer units. Hence, up to four monomer 
units may be present in the system. Both copolymers are character- 
ized by divariate distribution functions with respect to molecular weight 
(chain length) and chemical composition. The basic relations necessary 
for phase equilibrium calculations are derived. The influences of both 
polydispersities and of the different parameters included in the model 
for the excess Gibbs free energy are discussed by calculating cloud-point 
curves and shadow curves. Applications to practical systems are given. 

INTRODUCTION 

The problem of compatibility in copolymer blends has long been a subject 
of interest. Dating back to the first beginnings in the 194Os, a large number 
of papers on this subject has appeared. However, the great majority of these 
studies deal with practical aspects in regard to certain industrid purposes, 
and only relatively few studies are related to the basic thermodynamics of 
compatibility. Roe and Rigby [ 13 have recently reviewed the state of art in 
this field. Probably the most striking feature of copolymer blends is that 
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1498 RATZSCH ET AL. 

miscibility may occur even in the absence of any specific interactions be- 
tween their monomer units if the repulsive interactions are sufficiently strong 
[2 ,3] .  Attempts to describe demixing phenomena in systems with copoly- 
mers started with the pioneering paper by Scott [4], which used the solubil- 
ity parameter concept. 

Recent approaches use free-volume models [5,6] or lattice models [2 ,3 ,  
7-91 to explain certain experimental findings, but in most cases (e.g., Refs. 
2-9 and further papers cited in Ref. 1) there was no calculation of the com- 
plete phase diagrams, and only Koningsveld et  al. [7 ,9]  took the polydis- 
persity of the copolymers into account. Furthermore, the thermodynamic 
considerations were usually restricted to an analysis of the spinodal and/or 
the critical state criterion or even more qualitatively to the negative sign of 
the Gibbs free energy of mixing only. 

The calculation of phase diagrams in multicomponent systems is common- 
ly considered to be a tedious task. However, continuous thermodynamics pro- 
vides an elegant solution of this problem [ 10-121 which also holds true for 
solutions containing copolymers characterized by divariate distribution func- 
tions [ 13-15]. A first attempt was also made for a homopolymer/copolymer 
blend [16]. 

Continuous thermodynamics will be applied in this paper to blends of two 
random copolymers, each consisting of two different monomer units and both 
characterized by divariate distribution functions. The influences of both 
chemical and molecular weight distributions and of the different parameters 
included in the thermodynamic model describing the activity coefficients on 
the liquid-liquid equilibrium are discussed. 

DlVARlATE DISTRIBUTION FUNCTIONS 

Copolymers B and C are considered to each consist of two kinds of mono- 
mer units, (Y and 0 in B, y and 6 in C. Choosing a standard segment of arbi- 
trary size, the segment numbers ra, rp, ry ,  and r6 can be introduced. The total 
segment numbers rg and rc and the segment fractions YB and YC of the ar 
and the y monomer units within the molecules are given by 

rg = r,  i- r0, Yg = r d r s ;  

r C = r y + r 6 ,  Y c = r y / r c .  
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LIQUID-LIQUID EQUILIBRIUM 1499 

Then the compositions of the polydisperse copolymers may be described by 
the divariate distribution functions wB(rB, YB) and Wc(rc, Yc),  neglecting 
other polydispersities (e.g., sequence distribution, branching, etc.). These 
divariate distribution functions have to  fulfill the normalization condition 

which holds true for Copolymer C, too, 

number as well as the weight average ? of the chemical distribution are de- 
fined by 

The number-average r a n d  the (weight) segment average F of the segment 

The corresponding equations for Copolymer C are obtained by replacing the 
index B by C. 

For the sake of simplicity with respect to the mathematical problems in- 
volved with the double integrals, Copolymers B and C are assumed to obey 
(as random products) the generalized Stockmayer distribution as used in our 
earlier papers on copolymer solutions [ 13-15]. 
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1500 RATZSCH ET AL. 

where r is the gamma function, and kg and EB are given by 

The equations for C again read like those for B but with index C instead of B. 

PHASE EQUlLIBRIUM BY CONTINUOUS THERMODYNAMICS 

The conditions for phase equilibrium are formulated on the basis of chemi- 
cal potentials. For a mixture containing Copolymers B and C, the equilibrium 
condition reads [ 131 

i.e., the chemical potential pi(ri, Yj) is equal in both phases ' and I' for all 
species identified by segment numbers rg and rc  and by chemical composi- 
tions Y g  and Y c ,  respectively. With the Flory-Huggins mixture as the refer- 
ence state, the chemical potentials read [13] 

~ B ( r B , y g )  = $,o(rB. Y B )  + ~ ~ [ l n  J /B  wB(rB, Y B )  + 1 - rB/ij 

pc(rc,  YC) = P: ,O('C> YC) + R T b  J/c Wc(rc9 YC) +- 1 - rc/a 

rBRT In 6 ( r &  y g ) ,  ( 7 4  

+ rcRT ln&c, yc), (7b) 

where R is the universal gas constant, T is the absolute temperature, and r 
is defined by 

wtere FB and rc are given by Eq. (3a). The chemical potentials pH,o and 
pc ,o  contain contributions due to the pure species (which do not influence 
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LIQUID-LIQU I D EQUI LIBR I UM 1501 

the phase equilibrium calculation). The quantities& and& are the so-called 
segment-molar activity coefficients containing all deviations from the Flory- 
Huggins mixture. The phase-equilibrium conditions, Eq. (6),  lead to 

- - 

where 

Further treatment depends on how the distribution functions WBL~B,  YB) 
and Wc(rc, Yc) influence the segment-molar activity coefficientsTB and Tc. 
The logarithms Of TB and Tc are the partial segment-molar quantities with 

respect to the segment-molar excess Gibbs energy, ?/RT. Here, excess 
means the deviation from the Flory-Huggins mixture. 

G€-MODEL AND ACTIVITY COEFFICIENTS 

Explicit expressions have to be developed for the segment-molar activity 
coefficients in the equations discussed above in order to perform numerical 
calculations. By using the random mixing assumption for all kinds of seg- 
ments and applying the continuous description of the mixture, we obtain 
the number of all &-contacts (equal to the probability of all a-contacts) per 
mole of segments of the mixture B t C: 
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1502 RATZSCH ET AL. 

Here Tiara, Ad,. . . are the numbers of contacts specified. The relations 
- -  

are obtained in an analogous way. The quantities $B and Jlc are the overall 
segment fractions of all copolymer species B and C, respectively. The quan- 
tities S j  (i = a, f l , y ,  6) are surface-contact numbers. Random mixing is pro- 
vided by the surface contact probability 

- - 
id = SaYB $Boa = S p (  1 - fB)J/Be& = & 

- 
The segment molar internal energy of m&ing,  AM^, can be obtained the 

usual way by addition of all contributions AjjUij and subtraction of the terms 
already present in the pure Copolymers B or C. The final result reads 
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LlQU ID-LIQU ID EQUILIBRIUM 1503 

The quantities AUii are differences of interaction energies of the type 

(14) 
1 

AUii = Uii - - ([Jij t qi); 2 ij= a, 0, y, 6. 

As usual in polymer solution, thermodynamics interaction parameters of the 
type 

may be introduced, in which so is a standard surface area (which may be equal 

To simplify computations, allgji parameters are assumed to depend in a 
uniform way on T, i.e., by the common function P(T), so that gii =g,$(T). 
The pressure dependence is neglected in this paper. Furthermore, a modified 

concentration-dependent prefactor L($B) is used in instead of $B $c. 
only. Finally, these considerations result in an expression for (?of the type 

to sol>. 

2. 

with 

Hereg results from the terms in the brackets of Eq. (13), expressing the quan- 
tities AUu via Eq. (15) andgii =gijP(T) by the parametersgij. 

The function p(T) is assumed to follow 

It is important to note that P ( T )  (and not the gii parameters) includes the 
weighting factors accounting for the choices of the size of the standard seg- 
ment and of the standard surface area. If we confine ourselves to mixtures 
of copolymers of the same type, i.e., B(oq0 + C(Og), and use c = d = 0 in 
L(GB), Eq. (16) for GE/RT reduces to the result published by Koningsveld 
et al. [7-91, and if we assume additionally S j  = 1, i =  a,& it becomes the equa- 
tion discussed by Scott [4] . With neglect of polydispersity anduse again of 
c = d = 0, and all si = 1, Eq. (16) reduces to the relation given recently by dif- 
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RATZSCH ET AL. 1504 

ferent authors (eg., Refs. 1-3) in their discussion of miscibility behavior in 
monodisperse copolymer mixtures. There is also agreement with our rela- 
tions used recently for copolymer.solutions in the polydisperse case [ 14, 151. 

The segment-molar activity coefficients are derived according to the 
methods outlined elsewhere [ 131. As G E  depends on the weight-averages 
FB and Fc the activity coefficients depend on YB and Yc, respectively, but 
not on rg or rc.  

where 

with 

and 
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Ll QUl D-LI QU I D EQU I LI BR I UM 1505 

CLOUD-POINT CURVE AND SHADOW CURVE 

In this paper, consideration will be restricted to the boundary curves de- 
scribing the beginning of phase separation in polydisperse mixtures, i.e., the 
temperature of a given phase ’ is changed at constant pressure until “the first 
droplet” of the second phase ” is formed. The plot of the equilibrium tem- 
perature T versus $ g  ’ is called the cloud-point curve and the plot of T versus 
$ B “  is called the shadow curve. Thus, the unknowns are T, $B”, and the 
distribution functions W~”(rg, Y B )  and Wc”(rc, Yc). The solution of this 
problem is performed in a manner analogous to that described in earlier 
papers [ 10-121. Equations (9a-b) and (3a-c) lead to the unknown scalars 
of the problem. For Copolymer B, the equations read 

Replacement of the index B by C leads to the relations for the unknown 
scalars of Copolymer C. All double integrals can be solved analytically when 
the generalized Stockmayer distribution function, Eq. (4), is applied for 
Wg’(rg ,  Y B )  and Wc’(rc, Yc) .  As in the case of copolymer solutions (solvent 
A t polydisperse copolymer B) [ 13, 141, both distribution functions 
WB”(~B, YB)  and WC‘‘(rc, Y c )  of the shadow phase are again generalized 
Stockmayer distributions possessing the same values k g ,  Q and k c ,  EC, re- 
spectively, of the parent distribution functions in the homogeneous phase ’. 
The solution of the double integrals in Eqs. (25a-c) then provides the follow- 
ing relations: 
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1506 RATZSCH ET AL. 

The functions AB, B R ,  A c ,  and B c  are defined by 

PC = A c  + BCYC, 

where 

- 
These relations follow from the definitions of PB (Eq. 9c) and of lnfB (Eq. 
19a). The equations for A c  amd B c ,  resulting from Eqs. (9d) and (19b), 
read analogously. 

The six unknowns on the left-hand sides of Eqs. (26)-(28) represent the 
solution of a system of nonlinear equations to be treated by numerical 
methods. Because of $B" t $c'' = 1, one of the equations can be used for 
the determination of the equilibrium temperature T (or of the correspond- 
ing value of @(T)). For performing the calculations by a computer program, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
0
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



LI QU I 0-LIQU I D EQU I Ll B R I UM 1507 

the system may be reduced to four equations (Eqs. 27 and 28). The quanti- 
ties FB” and Fc” can be directly inserted into these four equations according 
to Eqs. (26a) and (26b). 

RESULTS AND DISCUSSION 

As a first step, mainly the influences of both polydispersities and of the 

various parameters included in the E*model will be discussed. Thus, calcu- 
lations are performed by using model mixtures for the copolymer system B + 
C. Examples for real systems are chosen for demonstration purposes and do 
not represent the results of detailed and sophisticated analysis of the phase 
behavior of the blends concerned. 

1. Blends of the Type B(a6) + C(a6) 

It is known that two random copolymers, composed octhe sam: two 
monomers a and but differing in chemical composition YB and Yc, may 
be miscible under conditions of T and P where the two homopolymers are 
only partially miscible [ 17) . The theoretical result given by Scott [4] states 
that, at given T and P, the maximum deviation Amax = ?c - f~ that is al- 
lowed for a compatible mixture will be independent of the mean (FB + 
?c)/2 if the concentration of the mixture and the molecular weights of B 
and C are fixed. Using the spinodal equation and the critical-point condition 
in the binary system B((UP) + C(0rp) of monodisperse copolymers, Casper and 
Morbitzer [ 181 gave a quite detailed study of the stability limits of such 
compatible mixtures. Also, on the basis of the spinodal and the critical point 
only, Koningsveld et al. showed that deviations from the “constant-A rule” 
may be due to polydispersity effects [7] or to surface/volume differences of 
the comonomers a! and 6 181. 

In this section the problem will be discussed on the basis of the cloud- 
point and shadow curves, the true envelopes of the demixing region. Model 
calculations are carried out for the following conditions: 

- - 
1. T B ‘ =  50, k~ = 1, Fc’= 50, k c =  1, a l lsf= 1, A =  ?C’ - YB’= 0.1 = Con- 

stant g& = 1. 
2, Parameters as for 1, but A increases. 
3. Parameters as for 1, but A = 0.2 and EC increases. 
4. Parameters as for 3, but EC = constant and sp/sa increases. 
5. Parameters as for 4, but splsa = 1 and kc increases. 
6 .  Parameters as for 5, but k~ = 1 and G E  parameters c and d f 0. 
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Ma YO 0 - 
a 

A = v,  -?; 
b -  

FIG. 1. Calculated phase equilibria in copolymer blends of the type B(@) 
+ C(4) .  Note: ma% E wt%.) (a) Cloud-point curves (-), shadow curves 
(- -), and critical points (o), YB’ = Fc‘ = 50, kg  = k c  = 1, allsi = 1. (b) Extre- 
mum of the cloud-point curve versus A = Fc’ - FB‘. Other parameters as in(a). 

Ma % B (shadow phase I 
759 622 M 31.3 
- 

t 

0 20 40 60 80 100 0 20 40 60 80 100 
Ma% 8 (feed phase 1 Ma B - - 

C d 

(c) Weight averages of the chemical composition, FB” and fc”, in the shadow 
phase versus A. YB’ = 0.1 = constant. Other parameters as in (a). (d) Cloud- 
point curves (-), shadow curves (- -), critical points (o), and critical line (-. -) 
for different widths of the chemical distribution EC of C. FB’ = 0.3, Fc‘ = 0.5, 
eg = 0.21. Other parameters as in (a). 
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c - 0 5  \‘ 
d = 00 
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___) 
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FIG. 1 (continued). (e) Cloud-point curves (-), shadow_curves (- -)Lcritical 
points (a), and critical line (-a -) for several ratios s p f s ~ .  YB’ = 0.3, Yc = 0.5. 
Other parameters as in (a). (f) Cloud-point curves (-), shadow curves (- -), 
and critical points (0) for different pairs of c and d parameters in L ( $ B ) .  
Other parameters as in (c). 

-0.05 1.4 

0 20 40 60 80 0 20 40 60 80 1 
Ma O/O B Ma O/O - 

9 h 

I 

(g) Threshold concentration (at I/p(T),,,,) versus sp/sa,  and versus the c param- 
eter of L ( $ B ) .  Other parameters as in (c). (h) Cloud-point curves (-), shadow 
curves (- -), critical points (a), and critical line (-. -) for several widths of the 
chain-length distribution of C. sp/sol = 1. Other parameters as in (c). 
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1510 RATZSCH ET AL. 

The characteristic results, summarized in Figs. la-h, lead to the following 
conclusions. The choice of g@ is arbitrary in the presence of only two mono- 
mer units, CY and 0, because g@=g&. The function p(T) is a solution of the 
phase equilibrium calculation, the order of fl(g is given by the choice of TB 
and FC and, finally, p(T) has to be adjusted to the experimental cloud-point 
curve in practical cases. Therefore, g@ = 1 is used in all cases discussed here. 

Comparison of the different factors influencing the cloud-point curve re- 
veals that the main effect is caused by the difference of chemical composi- 
tions A = Fc‘ - ?B‘ (see Figs. Id-f, h), as had been found earlier for the mono- 
disperse case [4] . Nevertheless, there are distinct effects on the exact location 
of the phase boundary keeping A = Yc’ - YB’ constant. Figure l(a) demon- 
strates that chemical polydispersity leads to a shift of the extremum of the 
cloud-point curve (the threshold value) and of the critical point. For Copoly- 
mer B(a.J), with ?B’ = 0.9, plus homopolymer C(a), with YC = 1, the ex- 
tremum is located at about 40 mass percent (ma% = wt%) B and the critical 
point at about 57 ma% B. 

Keeping A = 0.1 constant and decreasing TB’, the threshold leads to an 
extremum in 1//3(T), i-e., in temperature, if EB or EC possess their maximum 
of 0.25. After a further decrease of ?B’ to the case of Homopolymer B(P), 
with YB’ = 0, plus Copolymer C(Og), with yc’ = 0.1, the symmetrical case 
(because of FB’ = rc’, kB = k c )  to YB’ = 0.9 and vc’ = 1 occurs with the ex- 
tremum in 1/0(T) at about 60 ma% B and the critical point at about 43 ma% 
B. To sharpen this effect, caused mainly by the width of the chemical dis- 
tribution, Fig. l(d) shows how an increase in EC (not using Eq. 5b for E C )  
changes the main features of the phase diagram. Starting with a chemical 
monodisperse Copolymer C (as in nearly all cases considered in the litera- 
ture) and increasing EC again shifts the critical point and the threshold con- 
centration. 

The critical point moves from the right-hand shoulder to the left-hand 
side in comparison to the extremum. Of course, this is a model calculation, 
but it makes clear how large the influence of the chemical distribution may 
become. The fractionation effect regarding the chemical distribution, Fig. 
l(c), is comparatively small. It can be seen that A” = Pc‘’ - TB” is approxi- 
mately constant and that A” does not differ much from the initial value in 
the homogeneous phase. YB” and Yc’‘ are not strictly parallel, but this is 
almost beyond the possible accuracy of the lines drawn in Fig. l(c). 

The change in YB” and Fc’’ is far less than the ordinary fractionation 
effect in 7 ~ ‘ ‘  and Fc”. This is certainly due to the assumed random charac- 
ter of the copolymers and the Gaussian form of the chemical distribution. 
As a result of Eq. (28), all factors that possibly influence ?B” and YC” have 
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to appear in the terms BB and Bc, which also depend on A, but these terms 
turn out to be small. As already pointed out by Koningsveld et al. [7-91 on 
the basis of their spinodal analysis, changes of the surface ratio sdsa (Fig. le) 
and of the width of the chain-length distribution (Fig. lh) lead to certain 
shifts of the phase boundary, of its extremum, and of the critical point. Fur- 
thermore, the same effects can be observed by introducing the concentration- 

dependent term L ( J l g )  in G E  (Eq. 17). As Fig. l(g) demonstrates, these ef- 
fects may compensate each other to some extent. This is also true for the 
location of the critical point on the left-hand side or on the right-hand side 
of the extremum of the cloud-point curve. 

Figures la-h do not include any assumption whether lower or upper criti- 
cal solution behavior is considered. This is mainly a question of the form of 
l/P(T). But, of course, the correct location of the critical point and the ex- 
tremum have to be taken into account when adjusting parameters like sw so, 
c, and d to experimental cloud-point curves. Figures la-h help to find the 
correct relations and tendencies. 

Some practical aspects will be demonstrated by applying the results dis- 
cussed to some systems that have been investigated experimentally. Schmitt 
et al. [ 191 reported some observations by neutron scattering on the com- 
patibility of copoly(acrylonitri1e)s characterized by different mean chemical 
compositions and found miscibility in a certain range of A and Figure 2 
presents some results obtained by using a standard segment with a molecu- 
lar weight of 100, which is close to the segment size used by Schmitt [19]. 
As expected from Fig. l(b), A is again the main factor for the location of 
the cloud-point curve. At a fxed  value of l/P(T), i.e., of temperature, a cer- 
tain miscibility range can be constructed. Figure 2(b) shows the fair agree- 
ment of our calculations with the experimental results (taken from Fig. 3 in 
Ref. 19) for the width of the miscibility range with increasing r" of the mixed 
copolymers. The calculations are performed on the simplified basis c = d = 0 
and sP/str = 1 because no phase diagram was given in Ref. 19. 

An example of the case Homopolymer B(a) + Copolymer C(a,p) was dis- 
cussed earlier [ 161 . Here some cloud-point curves for the system polyethylene 
t (ethylene-co-acetate) published by Druz et al. [20] will be analyzed. From 
their material the series polyethylene PE2, PE4, PE5, PE100 t poly(ethy1ene- 
co-vinyl acetate) EVA29 is chosen. The samples are characterized by PE2, 

15 500;vinyl acetate content 28.9 ma%. Because nothing is reported ona,,,, 
PE2, PE4, PE5, and EVA29 are assumed to show a ratio ofMw/Mn = 2 and 
PElOO ofMW/Mn = 4, which are reasonable numbers for such products. Of 
course, the true values ofMw will influence the actual results to some extent 

Mn 2000; PE4, Mn 4000; PE5,Mn 5000; PE100, M n  100 000; EVA29, Mn 
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rd = 630 
0.40 

0 20 40 60 80 100 
M a % B  (SAN 8)  

a 

10' 

;L 1 
lo3 

10' 

T =  m s t .  at (3(Tl,, = 1.5 

I 
Ma%AN in c ( S A N X I  - 

b 

FIG. 2. Calculated phase equilibria in blends of two poly(styrene-co- 
acrylonitrile polymers (SAN). (a) Cloud-point curve (-), shadow curve 
(- -), and critical point ( 0 )  in blends of SAN 19 + SAN X (X = ma% of 
acrylonitrile). (b) Miscibility region for 'B = rc versus A in blends of 
SAN 19 + SAN X. Experimental points according to Ref. 19: (0 )  turbid, 
(0) transparent. 

- -  

but not the general conclusions to be drawn. M, = 100 is used, as above. The 
systems show upper critical solution behavior. The parameter c of L(J/B) is 
adjusted to the experimental maximum of the system PE2 + EVA29. The re- 
sults in Fig. 3(a) are calculated with the fittedvaluec = 0.062 andsdsa= 1. The 
experimental shifting of the maximum and the calculated results on maxi- 
mum and critical point agree. To obtain full correspondence with the ex- 
perimental cloud-point curves in the T-+B plane, Fig. 3(b), the /3(7) function 
has to be adjusted for each single system. The result, 

PE2 + EVA29: p ( r )  = - 0.01013 + 121.844K/T, 
PE4 + EVA29: KT) = - 0.05639 + 99.324KfT, 
PE5 + EVA29: f i r )  = - 0.06185 + 93.566K/T, 
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5.5 

3.5 

PE5 i EVA 29 

/-=- PE 4 + EVA 29 

fl, PE 2 + EVA 29 

20 LO 60 80 1 
Ma '10 PE 

c 

493 

443 

393 

20 40 60 80 11 
Mo v o  PE 

1513 

0 

0 b 

FIG. 3 .  Calculated phase equilibria in blends of polyethylene and poly- 
(ethyleneco-vinyl acetate). (a) Cloud-point curves (-), shadow curves (- -), 
and critical points (0) calculated on the basis of equal p( 7') functions. See 
text for parameters. (b) Cloud-point curves (----) for the same mixtures as in 
(a) but with fitted p(T) functions. Experimental values from Ref. 20. See 
text for explanation. 

demonstrates a certain dependence of G E  on Mn, which was not taken into 
account in the model used. The system PElOO t EVA29 lies beyond this pic- 
ture and is not shown in Fig. 3(b). The results of Ref. 20 show a much too 
small difference between the demixing curves of PE5 + EVA29 and PElOO 
t EVA29, according to our calculations. 

2. Blends of the Type B(a/3) + C(y)  

There is experimental (e.g., Refs. 1, 17,21, and 22) and theoretical (e.g., 
Refs. 2 , 3 , 5 , 6 ,  and 8) evidence that blends composed of a copolymer and a 
homopolymer formed by different monomer units may be compatible even if 
the homopolymer mixtures (at y or p t y )  are incompatible. This can occur 
in the absence of any specific interactions due to the so-called repulsion effect 
[2,3],  where the repulsion between the copolymer units a and 0 itself exceeds 
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1514 RATZSCH ET AL. 

the repulsion between each copolymer unit, a or 0, and the homopolymer 
unit y. 

The so-called window of miscibility is observed when the phase behavior, 
which in most cases is of the lower critical solution temperature type, is 
plotted in a temperature versus copolymer composition (Tvs FB) diagram. 
The most extensive experimental investigation of such blends, especially 
mixtures of copolymers from halogenated styrenes with poly(dimethy1- 
phenylene oxide), has been performed by Karasz and coworkers, who have 
published about 20 papers on these systems starting with Ref. 22. Theoreti- 
cal discussion (e.g., Refs 2, 3, 5, 6 ,  and 18) is limited in most cases to the 
analysis of spinodal and the critical point in binary (i.e., monodisperse) mix- 
tures, and sometimes the stability is even deduced from the negative sign of 

AMG 01 G , as in Case 1 discussed above. To our knowledge, there is no 
paper that takes chain length and chemical distributions explicitly into ac- 
count. This is so also for calculated phase diagrams in the literature. 

Again, the starting point will be model calculations for cloud-point curves 
in B ( 4 )  + C(y) systems. However, compared to the case B ( 4 )  + C(og>, there 
is now a much more complicated situation. First of all, some arguments regard- 
ing the values of g@, gar, and goy are needed. With emphasis on the polydis- 
persity effects, the parameter relations given by Kammer IS] are used. The 
model mixture is given by the same initial values as for Case 1 of B ( 4 )  + 
C(Crp), which permits comparison of some effects in this former case. 

After assuming again ?B‘ = icf = 50 and k~ = kc = 1, the quantity r ’ ~  ’ is 
varied, while Fc = 1 Figures 4(a)4(d) give insight into some of the main 
features. The expected results are obtained by variation of YB’. i.e., the misci- 
bility window (Fig. 4b) or the division of the l/P(T) versus F B I  diagram into a 
compatible and an incompatible region, depending on whether or not the at- 
traction is larger than the repulsion (Fig. 4c). The influence of both chemical 
and molecular weight distribution is of the same order as in the case B ( 4 )  t 
C(43). Figure 4(a) shows the splitting of the phase diagram into cloud-point 
curve and shadow curve. Because Fc = 1, fractionation with regard to the 
chemical composition occurs only with Copolymer B, and the curves of F B I ’  

versus J /B look like those in Fig. l(c) and are not reproduced here. Again, the 
fractionation effect for $’ is much larger than for FBI’. Variation of k~ or 
kc leads to the same effects as in Fig. l(h). There is a certain shift in the 
curves in Figs. 4(b) and 4(c) when the width of the chain-length distribution, 
i.e., k~ and kc ,  is varied. As shown in Figs. l(d)-l(f) and l(h), all these ef- 
fects can act in the same direction or can balance each other when combined 
properly. This behavior is demonstrated by variation of si (Fig. Id), but the 
curves look alike when the c a.nd d parameters, or EB at constant YB’, or 
k~ and kc  are varied in certain ways. 

= E  
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FIG. 4. Calculated phase equilibria in copolymer blends of the type B ( 4 )  
+ C(y). (a) Cloud-point curves (-), shadow curves (- -), and critical points 
(0) for different F B r  (a content in B). YB = rc' = 50, kg = k c  = I ,  all si = 1, 
gq as in (b). (b) Window of miscibility formed by the mixtures of (a). 

- 1  - 

301 

0 

,S@' 2 

one phase S region 

C d 

(c) The window of miscibility becomes a limit of miscibility by variation of 
thegii parameters. Other parameters as in (a). (d) Variation of the window 
of miscibility by variation of sp:  (- -) from critical point, (-) from extremum. 
sa = sy = 1. Other parameters as in (a). 
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1516 RATZSCH ET AL. 

The system poly(styreneco-acrylonitrile) + poly(methy1 methacrylate) 
was chosen as a real example. Stein et al. I231 reported compatibility in the 
range of 9 to 26.5 ma% of acrylonitrile in the copolymer. However, Schmitt 
1241 showed that, for certain acrylonitrile contents near 26 ma%, a very 
complicated phase behavior occurs characterized by two lower critical solu- 
tion temperature ranges and additionally one upper critical solution tempera- 
ture region. Kleintjens [25] presented a solution of the spinodal problem 
for this case by using the mean-field lattice-gas model and adjusting the sur- 
face/volume parameters to this diagram. 

Putting this problem aside for the moment, as a first step the calculations 
will be applied to some cloud-point curves published recently by Kammer and 
coworkers [21]. Poly(methy1 methacrylate) of MW 43 000 and& 25 000 is 
mixed with a series of various poly(styreneco-acry1onitrile)s with acrylonitrile 
contents of 9-35 ma%. As an example, the poly(styrene-co-acrylonitrile) 
sample is chosen for the calculations w i t h a w  179 000, Mn 91 000, and an 
acrylonitrile content of 34.4 ma%. The monomer units are defined by QI = 
CH2 -CH-C6H,, P = CH2 -CH-CN, and y = CH2 -C(CH3)-COOCH3. The 
surface parameters are taken from the revised UNIFAC tables [26] and lead 
to sp/sa = 0.5 and sy/sa = 1.1  5 as approximate values. 

The more difficult problem is the estimation of the ratiosgw/gap and 
goT/g@. The most suitable way would be to use phaseequilibrium data for 
the blends 4, ay, and Py and to fit the gij parameters to the corresponding 
cloud-point curves. However, such experimental data are not available. In- 
teraction parameters between polystyrene and poly(methy1 methacrylate) 
in solutions of both copolymers were estimated by light scattering [27,28] 
and from the liquid-liquid equilibrium in toluene [29-311. Interaction 
parameters between a-units and Punits can be taken from the data pub- 
lished by Schmitt et al. [ 191 and our calculations above.Thereis no infor- 
mation on the interaction parameter between poly(acry1onitrile) and poly- 
(methyl methacrylate). The ratio g&gd is approximated on this basis to 
be about 1/2. The ratio of gpy/gd was chosen to be approximately 3/4 
from the experience with model calculations (Fig. 4) with regard to the 
location of the miscibility window in agreement with the experimental 
findings [Zl] . Then the parameters c and d Of L($Q) (Eq. 17) were ad- 
justed to the minimum of the experimental cloud-point curve. As can be 
seen from Fig. 5(a), this results in c = 0.3 and d = 0 when the si-param- 
eters are neglected.Readjusting c and d with solsa = 0.5 and sT/sa = 1.15 
leads to c = -0.21. Nevertheless, Fig. 5(b) demonstrates that both param- 
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FIG. 5. Phase equilibria in blends of poly(styreneco-acrylonitrile) (SAN) 
and poly(methy1 methacrylate) (PMMA). (a) Cloud-point curve (-), shadow 
curve (- -), and critical point (0) in the system with SAN 34.4 for different ratios 
of the s values. For other parameters, see text. (b) Comparison of calculated 
and experimental results [ 291. (0) Calculated critical point. 1 : All Si = 1, c = 
0.3. 2 :  s P / s ~ = O . S , S P / S ~ =  1 .15 ,~=-0 .21 .  

rt 
470 

450 

43c 

0 Igj region 

1 a2 0.4 0.6 0.8 0 

(c) Window of miscibility calculated with the parameters of Set 2 in (b). (0) 

Experimental results [ 211 for 40 ma% SAN in the blend. (d) Fractionation 
effect with respect to the mean segment numbers 7'. Parameters from (a) 
with si # 1. 
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1518 RATZSCH ET AL. 

eter sets work equally well when compared with the experimental data. The 
results of fitting the p(T) function to them are p(T) = 0.0080 - 2.33215K/T 
wi thc= 0.3andsi= l,andP(T)=0.0067- 1.754OK/Twithc= -0.21 andsias 
indicated when?B andFc are obtained from an by division by& = 100. 

Figure 5(c) shows the resulting miscibility window if all parameters are 
kept constant (c = -0.21, etc.) and y~ is varied. The right-hand side at 
YB > 0.9 is less accurate than the other side of the window. Figure 5(d) 
illustrates the fractionation effect with regard to the segment number (molec- 
ular weight, chain length), which is much stronger than the fractionation ef- 
fect with respect to chemical composition. YB” is a nearly linear function 
with a rather low slope of less than 0.3% of that of YB’.  

3. Blends of the Type B(crp) + C($) 

Matters are most complicated in thls case, because there are six gu param- 
eters, four si parameters, and the quantities YB, Y(-, rg, and Fc which may be 
varied. Some theoretical discussions regarding the gij parameters have been 
reported [ 1 , 3 , 5 , 3 2 ]  on the basis of the spinodal equation or of the nega- 
tive sign of AMG. Our model calculations were again performed with the 
system YB’ = FC’ = 50, k~ = k c  = 1 to maintain comparability with the above 
results. Figures 6(a)-6(f) summarize some of the results obtained by com- 

one phase region ! \  

two phase region 

0 0.2 OX 0.6 0.8 
9, 
I_ 

a 

e - f 7 40 

20 

2 
1 1  

‘ region 

0.2 0.4 0.6 0.8 
9, 
-..L 

b 

FIG. 6 .  Calculated phase equilibria in copolymer blends of the type B ( 4 )  
+ C(y6). (a) Window of miscibility obtained with gar = g d  = 1 <gpY = go6 = 
1 . s < g 4 = g y 6  = 2 ; ~ ’ = r ~ ‘ = S O , k g = k c =  l , a l l s i =  1. (b)Limitofmisci- 
bility obtained withgpy=gp& = - 2  <garp=g$j =0;+1 <gay=ga6’2. Other 
parameters as in (a). 

- -  
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FIG. 6 .  (continued). (c) Window of miscibility obtained by combination of 
giiparametersfrom(a)and(b)withgw=. ',goy= 1 . 5 , g d =  2,g@ =-2,gy6 
= 1,  ga6 = 2. (d) Comparison of cloud-pzmt curves ( -) and critical points 
(0) for systems of (a), (b), and (c) with Yc' = 0.8. 
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(e) Cloud-point curves (-), shadow curves (- -), and critical points (0) in 
blends with monomer unit (Y substituted for y or 6 in C. For parameters, 
see (c) and text. (f) Cloud-point curves (-), shadow curves (- -), and critical 
points (0) in blends with monomer unit p substituted for y or 6 in C. For 
parameters, see (c) and text. (B(&) + C(6p) is completely miscible under the 
given conditions.) 
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bining two gjj parameter sets previously used for the case B ( 4 )  t C(y). Thus 
all possible influencing factors are restricted to one question only: How will 
a fourth copolymer unit change the phase diagrams obtained before? Suppose 
ga6 = gay, g@ = goy, and gy6 = g 4  diagrams symmetrical to Figs. 4(b) and 
4(c) are obtained, resulting in a shift of the miscibility window to lower 
1/0(T) values, i.e., the compatibility region becomes larger (Fig. 6a). By 
taking attractive forces (gii < 0) into account, diagrams resembling the be- 
havior of Fig. 4(c) are observed (Fig. 6b), but a miscibility window may also 
be found (Fig. 6c). Upon comparing the cloud-point curves belonging to 
Figs. 6(b) and 6(c), smaller differences (see the lower three curves in Fig. 6c) 
than would be expected are seen. 

Finally, it would be interesting to see how the phase diagrams will change 
if one of the two units (y, 6) in Copolymer C is replaced by a monomer unit 
a or 0 from Copolymer B. Figures 6(e) and 6 ( 9  give the results obtained for 
such “subsystems.” The most drastic effects for the parameter combination 
of Fig. 4(c) are observed if the monomer unit 6 is replaced by the monomer 
unit a (i.e., ga6 = 0, gy6 = gay, go6 = gag), which is mainly due to the change 
of the attractive value go6 = -2 from Fig. 4(c) to the repulsive value goQ = +2. 
On the other hand (Fig. 69,  complete miscibility is calculated @(T) < 0) if 
unit y is replaced by unit 0 (i.e., gP7 = 0, gy6 = g p ,  gay = gab, andgyg 
changes from +1 to -2). There are many more possible combinations leading 
to compatibility or to certain phase diagrams which cannot all be outlinedhere. 

This paper concludes by considering a practical example of the case B(&) t 
C(y0). Unfortunately, only a very small number of corresponding phase dia- 
grams can be found in the literature (see Refs. l and 17 for primary refer- 
ences). Thus, our calculations shall be applied to the system B poly(styrene- 
co-acrylonitrile) + C (butadieneco-acrylonitrile) recently investigated by 
Ougizawa and Inoue [32]. Both copolymers can be assumed to be random 
products with the following properties. Poly(styreneco-acrylonitrile): Mn 
68 400, a,,, 194 000, acrylonitrile content 25 ma%; poly(butadieneco- 
acrylonitrile): Mn 91 300, Mw 297 000, acrylonitrile content 40 ma%. 

Thus, there is an advantage if Copolymer B is the same product as was 
used in the examples above. Reliable information on the interaction param- 
etergay of polystyrene with polybutadiene can be taken from Ref. 33. 
Cloud-point curves of poly(styrene-co-butadiene) with its parent homopoly- 
mers are given in Ref. 34. Nothing could be found on the interaction be- 
tween polybutadiene and polyacrylonitrile. The units a and 0 are defined 
as above, and y by CH2 --CH=CH-CH2 (assuming an atactic product). The 
ratios Si/Sa, again obtained from the surface parameters [26] , are sp/sa = 
0.5 and sy/sa = 0.6. The gjj parameters were estimated by using the infor- 
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FIG. 7. Phase equilibria in blends of poly(styrene-co-acrylonitrile) (SAN) 
and polyfstyrenexo-butadiene) (SB). (a) Calculated cloud-point curves (-) 
in comparison with experimental results [32 ] .  See text for parameters. 
(b) Fractionation effects with respect to 7' and ?' for the case of lower 
critical solution temperature in (a). 

mation from Refs. 32 and 33 and from the results obtained above, leading to 
ga7/gafi = 0.05 and gpy/gd = 1.45. The parameters c and d in L($YB) were 
adjusted to the minimum or maximum, respectively, of the demixing curves 
given in Ref. 32. The two parameter sets for c and d are somewhat different 
because both extrema do not occur at the same blend composition. Figure 7 
shows the final result, where the upper curve is calculated with c = 0.55, d = 
0, and p(T)= 0.20392 - 49.3461K/T for lower critical solution temperature 
behavior; and the lower curve, exhibiting upper critical solution temperature 
behavior, is obtained wi thc=  0.38, d = 0.01, andp(T)= 0.039595 + 16.87692 
K/T. Again, the fractionation effect influences 7' primarily and r' less 
(Fig. 7b). 

CONCLUDING REMARKS 

The aim of this paper was to apply continuous thermodynamics to the liquid- 
liquid equilibrium in blends of random copolymers that are polydisperse both in 
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1522 RATZSCH ET AL. 

molecular weight and chemical composition. The generalized Stockmayer 
distribution (Eq. 4) was used to obtain analytical solutions of the occurring 
double integrals, and one has to be aware that this choice may influence the 
results of the model calculations. Three general cases were considered to 
some extent. The influences of various model parameters were discussed 
with respect to the resulting phase diagrams. Emphasis was placed on the 
fact that all conclusions were drawn here on the basis of the true envelope 
of the demixing region in polydisperse systems (the so-called cloud-point 
curve) instead of using the limit of instability (spinodal) or only the sign 
of AMG, as is usually done in the literature. Comparison with some experi- 
mental results showed acceptable results, notwithstanding a certain number 
of assumptions necessary for the practical calculations. The neglect of both 
polydispersities leads to a distinct loss in understanding of liquid-liquid 
phenomena in copolymer blends. 
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